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Abstract

A 2007 corporate acquisition resulted in the sale of all company-owned stores affili-
ated with a casual dining chain to franchisees. I exploit this change in franchise status
to estimate the effects of franchising. I use a utility-based choice model to predict
alcohol sales for all liquor-selling bars and restaurants in Texas over a 10-year period.
Using this model, I find that franchising a restaurant increases its revenues by 7 percent
and produces a consumer utility gain comparable to a 2.8-mile reduction in distance
from the individual’s home to the store.

1 Introduction

Interfirm relationships account for approximately half of all economic activity in the United
States and are the subject of a substantial amount of theoretical and empirical work. Included
in this research is an extensive literature discussing the tradeoffs between vertical integration
and vertical separation. However, data limitations and identification issues complicate at-
tempts to estimate the effects of vertical structure on firm profitability and consumer welfare.
Franchising serves as a case study of these issues.

There is a substantial amount of theoretical work suggesting that a franchised (vertically
separated) store should outperform a company-owned (vertically integrated) store. Many
of these predictions are based on the hypothesis that a franchisee, whose compensation is
determined entirely by store profits, will be less likely to cut corners than a manager, whose
compensation is typically less tied to store success. This is essentially a moral hazard argu-
ment. There is also theoretical work discussing the drawbacks of franchising. For example,
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there is the potential for free-riding by both the franchisor and the franchisee (Lafontaine
and Slade, 2012). While these theories are well established, attempts to estimate the effect
of franchising on store performance are made difficult by an important selection issue.

I illustrate this selection issue with a simple model of a profit-maximizing franchisor. The
model shows that the franchisor will choose to own stores in the most desirable locations
and will choose to franchise stores in less desirable locations. While some of the elements of
desirability can be observed by the econometrician (e.g. the number of nearby consumers),
others likely will not be (e.g. the cuisine preferences of nearby consumers). I use the model
to show that these unobservable differences can complicate efforts to estimate the effect
of franchising. The model also indicates that this potential bias can be overcome if the
researcher observes stores that experience an exogenous change in franchise status.

Publicly available data allows me to determine store-level alcohol revenues for all bars
and restaurants in Texas that sell liquor. I use these revenues as a proxy for store profits.
Included among these stores is Applebee’s, a national casual dining chain. At the beginning
of 2007, there were 93 Applebee’s stores in Texas, 33 of which were franchised. A corporate
sale during 2007 resulted in every company-owned store being franchised by the end of 2008.
Because I observe revenues for these stores both before and after they are franchised, I can
provide some evidence about the effects of franchising.

My work makes two important contributions to the franchising literature. First, I have
a source of exogenous variation that is uncommon in empirical franchising research. Second,
I use a utility-based choice model in my estimation, which allows me to estimate the effect
of franchising on the stores that change ownership, as well as the effects on consumers and
on competing stores.

In the choice model, individuals take restaurant characteristics and travel costs into
consideration when choosing how to allocate their restaurant budget. This results in revenue
predictions for every restaurant in my data set. I use nonlinear least squares to select
parameters that minimize the difference between observed revenues and predicted revenues.
Results indicate that franchising a store increases its revenues by 7 percent. By comparing
this to a counterfactual in which the stores are not franchised, I calculate the effects of
franchising on consumers and competitors. I find that consumer utility gains from visiting
a franchised rather than company-owned store are equivalent to utility gains that would be
experienced by a 2.8 mile reduction in travel distance to a company-owned store. I also find
that about 30 percent of the additional revenue came from consumers switching away from
competing national chains.

Most empirical work looks at the causes of franchising. A prominent theory of why a
franchised store should outperform a company-owned store is the moral hazard argument
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mentioned above (Mathewson and Winter, 1985; Brickley and Dark, 1987; Lafontaine, 1992).
A second theory is one of local expertise: a local franchisee is more likely to know important
details about their market than a distant franchisor and therefore be better able to customize
a store to fit its market (Minkler, 1992). These theories lead to predictions of which chains
will use franchising and, for a given chain, which stores will be franchised. There is a
substantial amount of research testing these predictions.

Bercovitz (1998) finds that businesses that entrust managers with more decisions are
more likely to use franchising; this supports the hypothesis that franchising is used to deal
with moral hazard. Similarly, Brickley and Dark (1987) find that monitoring costs and
potential free-riding problems are important determinants of whether a store is franchised. In
examining the locations of new fast food restaurants, Kalnins and Lafontaine (2004) find that
franchisee “clustering” is common; franchisees are more likely to be assigned a new store that
is geographically close and demographically similar to their existing stores. This supports
the hypothesis that franchising is used because franchisees have local expertise in a certain
region. Another indication that local expertise is important comes from the observation that,
for retailers with both company-owned and franchised stores, the company-owned stores
tend to be located near the franchisor’s headquarters (Brickley and Dark, 1987; Minkler,
1990). Other papers investigating franchising using firm-level characteristics as independent
variables include Lafontaine (1992), Brickley (1999), and Maruyama and Yamashita (2010).

Relatively little empirical research has examined the effects of franchising. Kalnins and
Mayer (2004) find that local experience by a franchisee is associated with lower failure
rates of pizza restaurant franchises. Lafontaine and Slade (1997) and Thomadsen (2005)
find evidence that company-owned stores charge lower prices than franchisee-owned stores.
These papers use different output measures than I do and do not attempt to account for
the endogeneity of ownership. Kosova et al. (2013) and Sveum and Sykuta (2018) use an
instrumental variables strategy to control for the endogeneity of ownership and estimate the
effect of franchising on store performance. Kosova et al. find that franchising has no effect on
hotel performance, while Sveum and Sykuta find mixed results in the restaurant industry.1

The papers most similar to mine are those that exploit store-level changes in franchise
status. Shelton (1967) finds that franchising has a positive effect on revenues at a restaurant
chain, while Hesford et al. (2014) finds that franchising has a negative effect on revenues
at a hotel chain. The main limitation of both of these papers is that changes in franchise
status were endogenous, typically triggered by poor performance. In work using data similar

1Kosova et al. (2013) use a hotel chain’s franchising decisions on other hotels in a given hotel’s market to
instrument for the franchise status of each hotel, noting that franchisors prefer to cluster franchised hotels
together. Sveum and Sykuta (2018) use a similar methodology and similar instruments.
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Table 1: Franchise Fees for Various Casual Dining Chains

Chain Fixed Fee Royalty
(percent)

Applebee’s $35,000 4

Buffalo Wild Wings $40,000 5

Chili’s $40,000 4

T.G.I. Friday’s $50,000 4

Notes: These numbers come from franchise disclosure
documents and do not include any additional fees paid to
the franchisor, including advertising fees.

to that used in this paper but using a different methodology, Ackermann (2017) finds that
franchising has a positive impact on store revenues. None of these studies use a utility-based
choice model or attempt to estimate the effect of franchising on consumers.

The rest of the paper proceeds as follows. In Section 2, I provide details relevant to
the study of franchised restaurants. In Section 3, I illustrate why endogenous selection of
ownership necessitates the use of an instrument. In Section 4, I describe the demand model
and explain how individual preferences are aggregated into restaurant revenues. In Section
5, I describe the data. In Section 6, I explain how I estimate the demand model. I present
estimation results and counterfactuals in Section 7. In Section 8, I conclude the paper with
a discussion of the implications of my results and areas for further research.

2 Institutional Details

As of 2016, there are over 730,000 franchised establishments in the U.S., earning over $670
billion in revenues and employing over 7 million people (IHS Global Insight, 2017). Franchis-
ing is used in a variety of industries including restaurants, fitness centers, convenience stores,
and hotels. While contract forms vary across companies, the most common fee structure is
one in which the franchisee pays the franchisor a fixed fee for the right to open a store and
then pays a royalty that is a fixed percentage of sales. For a given franchisor, the fixed fee
and royalty rate are usually the same for all franchisees and all stores. Furthermore, for a
given franchisor, franchise fees are generally persistent over time.

In the United States, the restaurant industry accounts for 4 percent of GDP, with pro-
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jected 2017 sales of $799 billion.2 With over 1,800 restaurants and $4.6 billion in annual
revenue, Applebee’s is the largest casual dining chain in the United States. Casual din-
ing restaurants are typically characterized by moderate prices, full table service, and the
availability of a variety of alcoholic beverages. Because I intend to measure the effect of
franchising on Applebee’s, I focus on Applebee’s and its closest competitors. Specifically, I
look at casual dining restaurants that, like Applebee’s, are affiliated with a national chain
and have a wide variety of menu items. In addition to traditional American fare like ham-
burgers and steak, their menus include items inspired by Italian, Asian, and Mexican cuisine.
I include the following stores in this grouping: Buffalo Wild Wings, Chili’s, and T.G.I. Fri-
day’s. Together with Applebee’s, these are four of the top seven casual dining chains in the
United States. While franchising is very common among fast food chains, it is used less
frequently by casual dining chains. For example, all Chili’s, T.G.I. Friday’s, Olive Garden,
Outback Steakhouse, and Red Lobster restaurants in Texas are company-owned. About half
of the Buffalo Wild Wings restaurants and all of the Applebee’s restaurants in Texas are
franchised.

For the chains that do franchise, fees follow the standard format discussed above and are
identical for all stores affiliated with a given franchisor. As shown in Table 1, fees are similar
across many large chains. Franchise contracts typically have a long term, around 20 years,
so the fixed fee represents a small share of the total fees paid. Because franchisors typically
aim to maintain a consistent brand identity, franchise contracts often contain specific rules
about conforming to franchisor policies. As a result, restaurants affiliated with the same
chain tend to have similar menu offerings and prices.3

At the beginning of 2007, there were 59 company-owned Applebee’s stores and 33 fran-
chised Applebee’s stores in Texas. In July of that year, the chain was sold to IHOP Corpo-
ration for $1.9 billion. IHOP Corporation is the parent company of IHOP, the largest chain
restaurant in the family dining category.4 IHOP Corporation has a strong preference toward
franchising its stores; at the time of the sale, nearly 100 percent of IHOP restaurants were
owned by franchisees. Shortly after the sale, IHOP Corporation began selling its company-
owned Applebee’s stores to franchises. By the end of 2008, all of Applebee’s stores located

2National Restaurant Association (2017).
3An example of Applebee’s attempt to balance this preference for uniformity with a desire to cater to

local markets can be found in its 2013 franchise disclosure document. Applebee’s creates a uniform menu
for all of its stores and requires all franchisees to use it. However, the chain also allows for franchisees to
“propose additional items that appeal to local trends and traditions.”

4The main difference between the family dining category and the casual dining category is that family
dining restaurants typically do not sell alcohol. Following the sale, IHOP Corporation changed its name to
DineEquity. Throughout the paper, I use “IHOP” to refer to the parent company that owns Applebee’s.
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Figure 1: Number of Applebee’s Stores in Texas
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in Texas were franchised.5 Annual store counts by ownership type are presented in Figure 1.

3 Ownership Selection

In this section I construct an illustrative model of a profit-maximizing franchisor deciding
whether a given store should be company-owned or franchised. While I do not attempt to
estimate this model, I gain intuition from it that I use in my empirical models. The model
gives two significant results. First, it predicts that the franchisor will choose to own stores
at the best locations and franchise stores at the other locations. Second, it highlights the
sort of exogenous variation needed to give an unbiased estimate of the franchise effect.

A franchisor is planning to open a store at location j and is deciding whether the store
should be company-owned or franchised. If store j is company-owned, the present value of
all future revenues for store j at the time of store j’s opening is

5This is not a single-state phenomenon; Applebee’s 2014 10-K states that 99 percent of IHOP and
Applebee’s stores are franchised.
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rCj = σaj + ξj, (1)

where aj contains location-level attributes that are observed by the econometrician and ξj
represents location-level determinants of revenue that are not observed by the econome-
trician. Components of aj may include demographics such as the population and average
income of the local market; σ is a vector of parameters. The ξj term is included because it
is likely that store revenues are determined by factors that are known to the franchisor but
unobserved by the econometrician (e.g. the cuisine preferences of nearby consumers).

As discussed earlier, there are reasons to believe that a franchised store will outperform
a company-owned store. I define β as the present discounted value of all additional revenues
earned by a store if it is franchised. So, revenue for a franchised store is

rFj = rCj + β.

Costs are normalized to zero, so maximizing revenue is equivalent to maximizing profit.
For a company-owned store, the franchisor keeps all revenue as profit:

ΠC
j = rCj . (2)

For a franchised store, the franchisor earns a share, v, of all revenue collected as well as a
fixed fee, K. Franchisor profit from a franchisee-owned store is

ΠF
j = v

(
rCj + β

)
+K.

The franchisor will choose to franchise store j if ΠF
j > ΠC

j . This occurs when

rCj <
K + βv

1− v . (3)

Thus, stores with low values of rCj will be franchised. The intuition for this prediction is
that the franchisor receives all of the profits of a company-owned store and only a fraction
of the revenue of a franchised store. For the best locations (those with the highest values of
rCj ), the franchisor is willing to give up the fixed fee and a share of the revenue in order to
keep all of the location’s profits.6

6The model makes two significant assumptions. The first is that there are no costs. The second is that
β is an additive increase to profits instead a multiplicative increase. (A multiplicative increase would be
shown as rF

j = βrC
j .) However, either of these two assumptions can be loosened. While the condition for

franchising shown in (3) will change, the conclusion that stores with lower values of rC
j are more likely to be

franchised will remain true. See Chaudhuri, Ghosh, and Spell (2001) for a different model which generates
similar predictions.
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To illustrate the impact that this selection has on attempts to measure β, consider two
stores, k and l, that have identical observables, ak = al. Store k is company-owned and store
l is franchised. I define rj as the revenue of store j and fj as a dummy variable equal to 1 if
store j is franchised:

rj = fjr
F
j + (1− fj)rCj .

The difference in store revenues is

rl − rk = ξl − ξk + β.

If the two stores have identical unobservables, or if ownership is randomly determined
such that

E[fj|ξj] = E[fj], (4)

then rl− rk is an unbiased estimate of β. However, it is likely that ξj will be correlated with
the ownership decision. There is a direct relationship between ξj and rCj shown in (1). As
shown in (3), stores with high values of rCj will be company owned, so it is likely that ξk > ξl.
This means that an estimation of β̂ = rl − rk is likely to be biased downward. Observing
both rCj and rFj for some store j would overcome this obstacle. Because this will involve
observing the same store at different times, I define fjt as a dummy variable equal to 1 if
store j is franchised at time t. The condition for a valid instrument can now be shown as

E[fjt|ξj] = E[fjt] (5)

for some store j that changes ownership. The best way to achieve this would be for an
exogenous event uncorrelated with store-level unobservables to cause the ownership of a
store to change. The sale of Applebee’s to IHOP satisfies these requirements; after 2008,
E[fjt|ξj] = E[fjt] for all stores because fjt = 1 for all stores.

The sale of Applebee’s to IHOP and the subsequent franchising of all company-owned
stores allows me to identify the effect of franchising. This event has two qualities that make
it a valid instrument. First, it results in some stores being observed both as company-
owned and franchised. Second, all stores are franchised by the end of 2008, so the post-2008
ownership of a store is uncorrelated with its unobservables.
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4 Utility Model

I now introduce a model of consumer preferences for restaurants. These preferences are used
to predict purchase decisions and subsequent store revenues. The store revenues before and
after an exogenous ownership change can be used to find the effect of franchising. I estimate
this model in Section 6. Consumers are defined by two factors: their income and where they
live. All consumers live in the population-weighted centroid of their zip code and have an
income equal to the median per-capita income for their zip code. Thus, all consumers within
a zip code are identical. Time is indexed by t = 1, ..., T . I model quarterly sales, so each t
represents a quarter. Zip code i has a population of nit at time t.

The model proceeds as follows. First, the consumer decides how much money to spend
at restaurants during time t. A consumer in zip code i at time t has income Iit and budgets
bit for eating out. Consumers spend a fixed share of their income at restaurants:

bit = QitηIit. (6)

I allow the share of income spent at restaurants to vary by income quartile and define
Qit = [Q1

it, Q
2
it, Q

3
it, Q

4
it] as a vector of indicator variables; Qq

i,t = 1 if zip code i is in income
quartile q at time t. Similarly, I define η = [η1, η2, η3, η4] as a vector of parameters. Thus
the share of income spent at restaurants by an individual in income quartile q is equal to ηq.

Note that this method is different from models that assume each individual demands
a certain quantity of a good. For example, Berry et al. (1995) consider consumers who
purchase, at most, a single car. I consider a consumer that has a fixed budget for restaurants
and is deciding how to spend this money. This sort of model is used by Holmes (2011) and
Ellickson et al. (2016); in both papers, the authors observe revenues but not prices and
quantities.

Next, the consumer determines where to spend each dollar of their restaurant budget by
examining all stores and choosing the one that offers the greatest utility. As I will detail
later, my econometric model is based on matching predicted sales to observed sales. To
improve the tractability of the model, I use different utility specifications for chain stores
(as defined in Section 2: Applebee’s, Buffalo Wild Wings, Chili’s, and T.G.I. Friday’s) and
non-chain stores.

Chain store utility

If store j is a chain store, the utility that individual i gets from spending dollar d at store j
at time t is
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Uijtd = Ajtα + Fjtβ + γHjt +Dijτ + εijtd. (7)

I define Ajt as a vector of indicator variables, [AAPLCjt , AAPLFjt , AAPLNjt ABWW
jt , ACHIjt , ATGIjt ],

that identify chain affiliation and, in the case of an Applebee’s store, its original owner.
ABWW
jt = 1 if store j is a Buffalo Wild Wings and ABWW

jt = 0 otherwise. ACHIjt (Chili’s) and
ATGIjt (T.G.I. Friday’s) are defined similarly. I divide Applebee’s stores into three groups, de-
pending on their original ownership. AAPLCjt = 1 if store j is an Applebee’s that was company-
owned when it first opened. AAPLFjt = 1 if store j is an Applebee’s that was franchised when
it first opened and store j was opened prior to 2007. AAPLNjt = 1 if store j is an Applebee’s
that opened in 2007 or later. Thus, α = [αAPLCjt , αAPLFjt , αAPLNjt , αBWW

jt , αCHIjt , αTGIjt ] is a
vector of parameters representing the utility intercept for each store type.

In order to identify the effect of franchising on store performance, Fjt is defined as an
indicator variable where Fjt = 1 if store j is an Applebee’s store that was originally company-
owned and t is a time period after 2007. Thus, for stores that change ownership, Fjt = 1 if
the store is franchised at time t. Note that for Applebee’s stores that are always franchised,
Fjt equals zero for all values of t. This means that αAPLF and αAPLN account for any
benefits due to franchisee ownership of these stores; because these stores never experience an
ownership change, the effect of franchising cannot be specifically identified. The additional
utility that a consumer receives from shopping at a franchised store, relative to the utility
received if the same store were company-owned, is equal to β. In other words, if a store
switches from company-owned to franchised, consumers will get additional utility in the
amount of β for each dollar spent at that store.

As discussed earlier, existing literature suggests two main avenues by which franchising
can provide additional utility to consumers and thereby increase demand. The first is moral
hazard. Because a franchisee has higher-powered incentives than a manager, she may be
more motivated than a manager to maximize store performance. For example, a franchisee
may be willing to spend more time reviewing resumes and interviewing candidates in order
to ensure that all employees are friendly and professional. The second is local expertise. A
franchisee may have a better sense of local tastes and therefore be better able to customize
their store to fit the market. For example, an Applebee’s franchisee may adjust restaurant
decor or implement new menu items to appeal to the local market.7

It is also possible that IHOP implemented company-wide policies that affected the rev-
enues of all Applebee’s stores. To account for this, I define Hjt as an indicator variable equal

7These examples are not purely hypothetical. As discussed in footnote 3, Applebee’s allows for the
possibility of a franchisee introducing new menu items. Applebee’s stores are also often decorated with local
sports memorabilia.
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to 1 if store j is an Applebee’s and t is a time period after 2008.8 Thus, γ is a parameter that
represents the effect that IHOP’s corporate ownership has on the revenue of all Applebee’s
stores.

To account for travel costs, Dij equals the distance from an individual in zip code i to
store j in miles. The disutility of travel is represented by τ , a parameter that I expect to
be negative. Thus, a consumer will get less utility from a store located far from her home.
As a result, stores located in highly populated areas will get more customers, all else equal.
Finally, εijtd is a random error term that follows the extreme value distribution for a nested
logit; the nesting structure is described below.

Non-chain store utility

Non-chain stores are aggregated by zip code. Specifically, I assume that all non-chain stores
within a zip code are grouped together at the centroid of the zip code as one “outside option,”
and that the only revenue observed is the total revenue of all stores. This could be compared
to a food court at a mall where sales at all of the restaurants in the food court are combined.
There is an outside option for each zip code that contains a non-chain store.

Utility for outside option j is:

Uijtd = Qitφ+ ρ logNj +Dijτ + εijtd.

The income quartile indicator Qit is included to allow for the utility of non-chain stores,
relative to that of chain stores, to differ by income. Individuals’ utility from the outside
option is therefore given by the parameter φ = [φ1, φ2, φ3, φ4]. If, relative to chain stores,
consumers in the fourth income quartile like non-chain stores more than consumers in the
first income quartile like them, then φ4 will be greater than φ1. Nj is the number of non-
chain stores included in j (i.e. the number of non-chain stores in zip code j). The ρ logNj

term is included because I expect consumers to prefer zip codes with more stores. I have
two reasons for this prediction. First, a zip code with more stores is more likely to have a
store that is located near the consumer’s house. Second, a zip code with more stores is more
likely to have the type of food that the consumer is looking for. Thus, ρ is expected to be
positive. I also expect that this benefit diminishes as the number of stores increases. This
is because, once there are a large number of stores, it is less likely that an additional store
will be more preferred, in terms of geography or food type, than the existing options. The
log operator is used to account for these diminishing returns.

8I use 2008 rather than 2007 as a cutoff here to ensure that there is a sufficient amount of time for IHOP
to have implemented new policies.
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Nesting

To account for the possibility that consumers’ tastes for Applebee’s are correlated with
their tastes for other chain restaurants, I use a nested logit model with two nests: one
nest contains chain restaurants and the other nest contains outside options. λ ∈ (0, 1) is a
measure of correlation. If λ = 1, there is no correlation among taste shocks and the model
simplifies to a standard multinomial logit. If λ = 0, taste shocks within a nest are perfectly
correlated.9 I define JCt as the collection of all chain stores at time t and JAt as the collection
of all outside options at time t.

Store revenues

I define Ūijt as follows: Ūijt = Uijtd − εijtd. For a given chain store, the only differences in
Ūijt among consumers are due to different travel distances and, in the case of Applebee’s,
whether the store was originally franchised. The share of an individual’s budget spent at a
store is equal to the probability of the individual choosing to spend a given dollar at that
store; probabilities follow the standard formulas for the nested logit model. If store j is a
chain store, the total share of consumer i’s budget spent at store j at time t is

pijt =
eŪijt/λ

(∑
k∈JC

t
eŪijt/λ

)λ−1

 ∑
k∈JC

t

eŪijt/λ

λ +
 ∑
k∈JO

t

eŪijt/λ

λ
. (8)

If j represents one of the outside options, the total share of consumer i’s budget spent at
outside option j at time t is

pijt =
eŪijt/λ

(∑
k∈JO

t
eŪijt/λ

)λ−1

 ∑
k∈JC

t

eŪijt/λ

λ +
 ∑
k∈JO

t

eŪijt/λ

λ
.

While each consumer has each store in their choice set, the disutility of travel should lead
to stores far from an individual’s home being chosen with a low probability.10

Individual purchase shares can be aggregated to find store revenues. Consumer i spends
a total of

Rijt = pijtbit (9)
9A more thorough discussion of the nested logit can be found in Davidson and MacKinnon (2004).

10I also estimated specifications in which choice sets were limited to locations within 75 miles of the
consumer. Results are similar to those presented in this paper.
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at store j at time t. Total revenue for store j is

Rjt =
∑
i∈Zt

nitRijt, (10)

where Zt is the set of all zip codes at time t.
I do not observe prices and quantities and therefore do not attempt to estimate demand.

However, as discussed in Jin and Leslie (2003), an increase in revenues can be attributed to
an upward shift of the demand curve.11 In my model, for a given location at a given time,
any changes in store revenues are due to changes in Ūijt. Thus, controlling for changes in
populations, budgets, and competitors, if a store earns more revenue, it must be because
the utility it provides consumers increased. If store j changes from being company-owned to
franchised, Fjt will change from 0 to 1 and, if β is positive, Ūijt will increase for all consumers.
The magnitude of β will determine the size of the increase in Ūijt and the subsequent increase
in Rjt. Therefore, estimating the effect of franchising on revenues is analogous to estimating
β.

5 Data

I next describe the three main data sets used in my analysis. The first is store-level alcohol
revenues for all bars and restaurants in the state of Texas that sell liquor. The second
is zip code level population and income data available from government sources. The third
consists of disclosure documents required by law to be published by franchisors and furnished
to potential franchisees. Summary statistics for store revenues and zip code level populations
during the first quarter of 2013 are shown in Table 2.

Texas mixed beverage sales tax

My research covers restaurant franchising in the state of Texas, specifically establishments
that sell liquor. In 2015, there were over 43,000 restaurants in Texas with 2016 projected
sales of $52.4 billion (National Restaurant Association, 2016). In 2013, there were over
15,000 restaurants in Texas that sold liquor, generating more than $5.5 billion in alcohol
sales.

Texas imposes a mixed beverage sales tax on all establishments selling liquor to be con-
11This is true even if I allow for the possibility that a franchisee can reduce marginal costs. If the cost

reduction is accompanied by a price reduction, then an increase in revenues may be due to a decrease in
prices. However, because my model is concerned with utility per dollar spent, a reduction in price has the
same effect on Ūijt as an increase in quality.
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Table 2: Summary statistics for the first quarter of 2013

N Mean Std. Dev. Min Max p25 p75

Store Alcohol Revenues

Applebee’s 100 127,908 52,606 33,876 301,348 86,007 164,084

Buffalo Wild Wings 83 192,246 77,876 43,304 631,270 151,312 208,414

Chili’s 208 107,038 31,658 20,791 215,367 86,430 123,094

T.G.I. Friday’s 31 132,098 56,288 56,004 318,888 102,871 143,570

Outside option 973 1,343,398 3,223,087 491 58,994,137 85,178 1,347,029

Stores per outside option 973 14 19 1 236 3 19

Zip code populations 1,623 16,176 18,320 110 115,975 2,240 25,370

Note: Each outside option includes all non-chain stores in a zip code.

sumed on premises, primarily bars and restaurants. While the tax is only imposed on estab-
lishments that sell liquor, those establishments must pay the tax on all alcoholic beverages
sold, including beer and wine.12 This tax is equal to a fixed share of revenue (14 percent
during my sample period) from the sales of alcoholic beverages. The amount collected is
publicly available on a per-store, per-month basis. By dividing the tax revenue by the tax
rate, I obtain store-level alcohol revenues. I aggregate across months to obtain quarterly
sales and use data covering 2004 through the third quarter of 2013.

The data have several features. They cover an entire market, rather than only a specific
firm. By observing when firms appear and disappear in the data, I can infer when firms enter
and exit. Finally, the data includes locations for all firms in the form of street addresses;
I use ArcGIS software to identify latitude and longitude coordinates for each store. The
data also have some limitations. The most significant is that they only include alcohol sales,
rather than all revenues received by the restaurant. Thus, I assume that alcohol sales are a
proxy for total sales. It is worth noting that alcohol sales typically have a large impact on
store success, because alcohol sales generate higher profit margins than food sales. A second
limitation is that the data only includes revenues, rather than prices and quantities. This
means that I cannot differentiate between a store that sells a small quantity of high-priced
drinks and a store that sells a large quantity of low-priced drinks.

For Applebee’s, Buffalo Wild Wings, Chili’s, and T.G.I. Friday’s, I used franchise disclo-
12I subsequently refer to these sales as “on-premises” sales.
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sure documents, company websites, and online mapping tools to ensure that all restaurants
were properly identified and geocoded. I confirmed that each store affiliated with these
chains sells liquor and is included in the tax data. (Furthermore, franchise disclosure docu-
ments indicate that these chains will not allow a store to open without a liquor license.) The
chains have similar average per-store revenues, with Buffalo Wild Wings having the highest
average revenues ($192,246) and Chili’s the lowest ($107,038). Chili’s, which originated in
Texas, has more outlets in Texas than the other chains.

Stores other than the four chains mentioned above are grouped together at the zip code
level, with each group representing an outside option. The average outside option contains
14 stores, with the largest outside option containing 236 stores.

Population data

I use federal income tax return data to estimate annual zip code level populations from
2003 to 2013. The Internal Revenue Service (IRS) releases information on the number of tax
returns filed in each zip code. Also included in this data is the number of claimed exemptions
filed in each zip code, which the IRS states serves as an estimate for population.13 Because
this estimate is not exact, I multiply each zip code’s estimated population by a constant to
ensure that total estimated state population matches the actual population each year. During
my sample period, this constant ranged from 1.04 to 1.09. Thus, the allocation of population
among zip codes may be incorrect, but total statewide population will be correct.14 I next
find the latitude and longitude of the centroid of each zip code using MABLE, an online
database maintained by the Missouri State Library. In 2013, there were 1,623 zip codes in
Texas with an average population of 16,176 and a median population of 8,672. More densely
populated areas contain zip codes that are geographically smaller, while in less populated
regions, a single zip code can span a very large area.

Texas experienced significant population growth during my sample period, with statewide
population increasing from approximately 22,300,000 to approximately 26,450,000. This
growth varied significantly among zip codes, with a quarter of zip codes experiencing no
population growth and a quarter of zip codes experiencing a population increase of 20 percent

13The number of claimed exemptions in a region has frequently been used in population estimates. The
U.S. Census Bureau uses this information when calculating annual county-level population estimates and
when estimating various statistics, such as poverty rates and health insurance coverage as part of SAIPE
(Small Area Income and Poverty Estimates). See Sailer and Weber (1998) for additional discussion.

14While a more accurate population count would be preferred, the finest level where population is annually
tallied by the U.S. Census Bureau or the state of Texas is by county. Because travel cost is a key component
of my analysis, it is important to be as precise as possible when modeling where consumers live. There
are many more zip codes than counties, so using zip code level populations gives a better approximation of
where people live.
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or more. This underscores the importance of using a model that separates revenue changes
due to franchising from revenue changes due to population growth.

Franchise disclosure documents

Federal law requires franchisors to create a franchise disclosure document (FDD) and dis-
tribute it to potential franchisees. FDDs contain information about the franchisor and the
business relationship between the franchisor and its franchisees. Several states require all
franchisors operating in that state to submit an FDD to the state, in which case the FDD of-
ten becomes a public record. Each FDD includes a list of all franchisee-owned stores.15 I use
Applebee’s FDDs from 2006 and 2010-2011 to determine which stores were company-owned
and which were franchised prior to 2008.

6 Econometric Analysis

I now explain how I adapt the model from Section 4 for estimation, using the sale of Ap-
plebee’s to IHOP and subsequent franchising of all company-owned Applebee’s stores to
identify the effect of franchising on store-level alcohol revenues. There are 671,426 revenue
observations in my data set, where an observation is the alcohol revenue of a single store in
a single quarter. However, as discussed earlier, I aggregate non-chain stores into aggregate
stores. This reduces the number of observations to 81,138. My econometric model is based
on using nonlinear least squares to minimize the difference between predicted revenue and
observed revenue for these observations.

I now finalize a list of parameters to estimate and detail my estimation method. As
described in Section 4, I aggregate individual expenditures to find store revenues. I define
θ = (α, β, γ, τ, φ, ρ, λ) as the set of parameters that determine how individuals allocate
their budget across stores. Because I do not observe when in 2008 the ownership changes
occur, I separate F and β into two components, one for 2008 and one for all subsequent years:
β08 is an estimate of the franchise effect in 2008 and β09 is an estimate of the franchise effect in
2009 and later. I consider β09 to be a more accurate estimate of the franchise effect, because
all stores are definitely franchised starting in 2009. F 08

jt and F 09
jt are defined similarly. The

share of income spent on on-premises alcohol consumption is represented by the vector η,
which is a parameter to be estimated. Θ = (θ, η) is the full set of parameters. In logit
demand models, utilities are relative, so φ1 is normalized to equal zero, meaning that a
consumer in the lowest income quartile eating at an outside option that contains a single

15Many FDDs, including those for Applebee’s, also list all company-owned stores.

16



store without having to travel receives a utility of zero. Expressions for budgets, utilities
and expenditure shares can now be expressed as functions of parameters: bit(θ), Ūijt(θ), and
pijt(θ) respectively.

Consumers in zip code i spend a total of

Rijt(Θ) = pijt(θ)bit(η)nit

at store j at time t. Total predicted revenue for store j at time t is

Rjt(Θ) =
∑
i∈Zt

Rijt(Θ).

I attribute all differences between predicted revenue, Rjt(Θ), and observed revenue, RO
jt, to

measurement error. I model this measurement error as a mean-zero random multiplicative
shock, ujt, that affects each store and is independent across stores and time periods:

RO
jt = eujtRjt(Θ).

Nonlinear least squares estimation produces the estimator

Θ̂ = argmin
Θ

T∑
t=1

∑
j∈Jt

(
log(RO

jt )− log (Rjt(Θ))
)2
,

where Jt is the union of JCt and JAt . This estimator is consistent and asymptotically normal.
Standard errors are computed by the appropriate transformation of the Hessian matrix.16

7 Results

Results for this model are presented as Specification (1) in Table 3. I next add a linear
time trend to the model in an attempt to separate gradual changes in store revenues from
abrupt changes caused by the IHOP sale. This accounts for the possibility that, overall,
Applebee’s was becoming more or less popular over time. For example, it may be that
its brand reputation was improving or that American diners were developing a taste for
Applebee’s fare. These results are shown as Specification (2) in Table 3. There is a positive
and statistically significant upward trend. Because this trend is statistically significant and
significantly improves the fit of my model, I consider its results to be the most reliable and
discuss them in this section.

16See Wooldridge (2010) for a full explanation of the nonlinear least squares estimator.
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The most important result is that the franchise effect (β09) is positive and statistically
significant, with a coefficient of 0.051 and p < 0.01. This means that consumers get additional
utility equal to 0.051 when visiting a franchised Applebee’s compared with a company-
owned Applebee’s. The coefficient itself does not provide an intuitive description of the
value of franchising. However, it can be compared with other estimated coefficients to draw
meaningful interpretations of the additional utility consumers receive from a franchised store.
I will use the estimated values of travel cost (τ) and value of each outside-option store (ρ)
to perform such comparisons.

As expected, travel cost is negative, with a coefficient of -0.018 and p < 0.01. By dividing
β09 by τ , I find that a consumer would be indifferent between a franchised Applebee’s and an
otherwise identical company-owned Applebee’s that is located 2.8 miles closer to her home.
The estimate of ρ is positive, indicating that consumers prefer outside options that contain
more restaurants. The coefficient is equal to 0.893 with p < 0.01. The increase in utility
from shopping at an Applebee’s store that becomes franchised is equal to the utility increase
that occurs when the number of stores in an outside option increases from 14 (the average
number of stores in an outside option) to 14.8. Utility calculations for all specifications are
shown in Table 4.

I find that the sale to IHOP had a positive impact on revenues for Applebee’s stores of all
ownership structures. This may be due to new chainwide policies, such as new menu items
or a new advertising campaign. The additional utility enjoyed by patrons of an Applebee’s
store due to IHOP’s ownership is equivalent to the utility gain from an 3.1 mile decrease in
travel distance to that store.

The 2008 effect of franchising is negative but not significant. There are two likely ex-
planations for this result. The first is that, as discussed earlier, it is possible that stores
that changed ownership were company-owned during some part of 2008 and therefore any
franchise effect would be diminished. The second is that, because there are relatively few
observations where F 08

jt = 1, it is difficult to separate causality from random noise.
Budget coefficients are displayed as dollars spent each quarter per $10,000 in annual

income. Individuals in the second lowest income quartile spend the greatest percentage of
their income on on-premises alcohol sales and individuals in the highest income quartile the
least. Preference for chain restaurants relative to other stores decreases as income quartile
increases. The nesting coefficient is 0.68 with p < 0.01, indicating that preferences for
Applebee’s stores are correlated with those for other chain stores.

I turn next to α, the vector of utility intercepts. Each component of α can be thought
of as an approximation of each store type’s unobserved utility determinants. For example,
Buffalo Wild Wings stores tend to have higher alcohol revenues than other chains. One
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possible explanation for this is that Buffalo Wild Wings stores are located in areas with
higher populations or less competition. An alternative explanation is that, all else being
equal, Buffalo Wild Wings stores generate more revenues than other chain stores due to
factors that are unobservable to the researcher. For example, it may be that, because
Buffalo Wild Wings markets itself as a sports bar, it tends to draw customers who will
stay longer and buy more alcohol. These unobservable factors determine αBWW . Regression
results show that αBWW is greater than the other components of α, indicating that there are
unobserved factors leading to Buffalo Wild Wings stores having greater revenues.

I am most concerned with αAPLC , αAPLF , and αAPLN . While αAPLF and αAPLN also
reflect any increase in utility due to franchisee ownership, αAPLC does not. The post-2008
utility intercept for an Applebee’s store that changes ownership is given by αAPLC+β09. This
reflects both the original intercept as well as the additional utility provided by franchising. I
next compare αAPLF , αAPLN , and αAPLC +β09; these intercepts all include the benefits from
franchising, so remaining differences indicate differences in utility due to unobserved location
quality. I find that αAPLC + β09 > αAPLF , meaning that stores that were initially company
owned tended to be located in better locations than those that were initially franchised,
because Applebee’s chose to own the stores with the best unobservables, which supports
my earlier hypothesis. I also find that αAPLN is between αAPLC + β09 and αAPLF . This is
likely because, after the sale to IHOP, there was no longer any ownership selection, so αAPLN

includes both the best and worst locations.
While this method estimates the effect of franchising on stores that change ownership,

this may be a lower bound on the average effect of franchising on all Applebee’s stores (not
just those that were initially company-owned). In addition to choosing to own the best
locations, Applebee’s may have also chosen to own the locations where franchising would
have provided the smallest benefit. For example, suppose that there is a location that is next
door to Applebee’s corporate headquarters. Applebee’s may believe that, because the store is
so close, they will avoid the monitoring difficulties and local inexpertise that typically plague
company-owned stores.17 If this is the case, they may find that the benefits of franchising
are negligible and instead decide to own the store. On the other hand, the stores that would
see the biggest benefit from franchising are most likely to be initially franchised; these stores
do not experience an ownership change and are not used to estimate the franchise effect.
One way to investigate this further would be to find an instance where an exogenous event
caused franchised stores to become company-owned.

17Kalnins and Lafontaine (2013) provide evidence that increasing the distance from a store to its corporate
headquarters decreases store performance.
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Additional time trends

Next, I combine the time trend described above with a linear time trend that applies only to
Applebee’s stores that were initially company-owned. This accounts for the possibility that
the stores that were initially company owned were improving throughout my sample, and
that this improvement was greater than the overall improvement occurring in Applebee’s
stores. When I include this trend, the estimated effect of franchising becomes much smaller
and statistically insignificant. However, the trend itself is not statistically significant, and
the addition of the trend adds very little to the predictive power of the model. (The sum of
squared residuals decreases by 0.0006 percent).

One possibility for the positive trend of company-owned stores is that these stores were
located in areas where preferences for Applebee’s were increasing over time. For example,
there were five stores in Austin at the time of the sale to IHOP, all of them company-owned.
There may have been an unobserved demographic change occurring in Austin during my
sample period, where people who like Applebee’s were moving into the city and those who
dislike Applebee’s were moving out. To account for this possibility, I combine the linear
time trend for all Applebee’s used in Specification (2) with an additional time trend. This
time trend applies to both Applebee’s stores that were company-owned and other chain
stores that are located within 15 miles of those Applebee’s stores. The key assumption here
is that, if tastes for Applebee’s are increasing, tastes for other chain stores are increasing
as well. (Continuing the earlier example, if the new residents of Austin have a taste for
Applebee’s, it seems likely that they would have similar feelings for Chili’s.) I also include
an additional intercept term to distinguish any trend from the possibility that these stores
were in locations with better unobservables. Results are shown as Specification (4) in Table
3. This new intercept is positive, with a coefficient of 0.126 and p<0.01. The new trend is
negative with p<0.01 but very small in magnitude, with a coefficient of -0.0027. Overall,
because the intercept is much larger than the trend, the overall effect is positive for all time
periods in my sample. This indicates that company-owned Applebee’s were located in areas
where preferences for chain restaurants were especially high. The franchise effect is positive,
with a coefficient of 0.09 and p < 0.01.

Adaptation

I next adjust the model to allow for non-Applebee’s chain stores that were located within 15
miles of an Applebee’s store that changed ownership to adapt to the Applebee’s ownership
change. For example, it may be that a nearby Chili’s store was able to copy customizations
made by the new Applebee’s franchisee or that it faced competitive pressure to improve its
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offerings. I also include an additional intercept term for these stores. This intercept term is
added to the store’s value of α and distinguishes an adaptation following the IHOP sale from
the possibility that these stores were in locations with better unobservables. I find that the
coefficient on this intercept term is positive but not statistically significant. Perhaps surpris-
ingly, the adaptation coefficient is actually negative, indicating that chain stores responded
to the Applebee’s franchising by getting worse. One possible explanation for this is that the
new Applebee’s franchisees hired away the best employees of these competing stores. Alter-
natively, it may be that the new franchisees were especially effective at targeting customers
of the other chain stores, perhaps by copying the menu items or marketing strategies of these
stores. If the additional revenue earned by Applebee’s stores that changed franchise status
came disproportionately from consumers switching away other chain stores, this could result
in a negative adaptation coefficient. Complete results are shown as Specification (5) in Table
3.

Table 3: Parameter Estimates

Param. Description (1) (2) (3) (4) (5)

β09 Franchise effect 0.065∗∗∗ 0.051∗∗ 0.011 0.09∗∗∗ 0.038

(0.026) (0.028) (0.064) (0.032) (0.044)

γ IHOP sale 0.187∗∗∗ 0.055∗∗ 0.076∗∗ 0.033 0.058

(0.022) (0.030) (0.040) (0.038) (0.052)

β08 2008 effect 0.040∗ -0.024 -0.033∗ -0.018 -0.022

(0.032) (0.025) (0.025) (0.038) (0.051)

τ Travel cost -0.018∗∗∗ -0.018∗∗∗ -0.018∗∗∗ -0.019∗∗∗ -0.019∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.005)

ρ Per-store utility 0.898∗∗∗ 0.893∗∗∗ 0.894∗∗∗ 0.916∗∗∗ 0.905∗∗∗

(0.034) (0.030) (0.023) (0.041) (0.034)

λ Nesting parameter 0.682∗∗∗ 0.678∗∗∗ 0.679∗∗∗ 0.695∗∗∗ 0.687∗∗∗

(0.026) (0.023) (0.018) (0.031) (0.016)

η1 Budget 1 10.182∗∗∗ 10.181∗∗∗ 10.181∗∗∗ 10.188∗∗∗ 10.186∗∗∗

(0.105) (0.113) (0.109) (0.121) (0.129)

η2 Budget 2 14.467∗∗∗ 14.470∗∗∗ 14.470∗∗∗ 14.454∗∗∗ 14.459∗∗∗

(0.161) (0.158) (0.156) (0.163) (0.237)

η3 Budget 3 8.251∗∗∗ 8.252∗∗∗ 8.252∗∗∗ 8.257∗∗∗ 8.256∗∗∗

Continued . . .
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Table 3: (continued)

Param. Description (1) (2) (3) (4) (5)

(0.124) (0.129) (0.128) (0.111) (0.217)

η4 Budget 4 7.274∗∗∗ 7.275∗∗∗ 7.274∗∗∗ 7.274∗∗∗ 7.274∗∗∗

(0.088) (0.089) (0.091) (0.095) (0.124)

φ2 Outside 2 0.666∗∗∗ 0.664∗∗∗ 0.664∗∗∗ 0.644∗∗∗ 0.649∗∗∗

(0.032) (0.032) (0.034) (0.036) (0.047)

φ3 Outside 3 0.733∗∗∗ 0.736∗∗∗ 0.736∗∗∗ 0.782∗∗∗ 0.785∗∗∗

(0.040) (0.039) (0.038) (0.044) (0.084)

φ4 Outside 4 1.038∗∗∗ 1.041∗∗∗ 1.041∗∗∗ 1.057∗∗∗ 1.064∗∗∗

(0.036) (0.037) (0.037) (0.04) (0.045)

αAP LC APLC intercept 0.463∗∗∗ 0.274∗∗∗ 0.253∗∗∗ 0.407∗∗∗ 0.342∗∗

(0.104) (0.092) (0.077) (0.130) (0.168)

αAP LF APLF intercept 0.281∗∗∗ 0.080 0.111∗ 0.113 0.121∗

(0.096) (0.089) (0.077) (0.115) (0.090)

αAP LN APLN intercept 0.346∗∗∗ 0.125∗ 0.160∗∗ 0.166∗ 0.179∗∗∗

(0.107) (0.096) (0.089) (0.123) (0.063)

αBW W BWW intercept 1.071∗∗∗ 1.054∗∗∗ 1.056∗∗∗ 1.132∗∗∗ 1.093∗∗∗

(0.124) (0.109) (0.082) (0.151) (0.146)

αCHI CHI intercept 0.584∗∗∗ 0.568∗∗∗ 0.570∗∗∗ 0.633∗∗∗ 0.601∗∗∗

(0.106) (0.093) (0.071) (0.129) (0.062)

αT GI TGI intercept 0.640∗∗∗ 0.624∗∗∗ 0.626∗∗∗ 0.692∗∗∗ 0.658 ∗∗∗

(0.108) (0.096) (0.072) (0.132) (0.137)

APL trend 0.007∗∗∗ 0.006∗∗∗ 0.008∗∗∗ 0.007∗∗

(0.001) (0.002) (0.001) (0.004)

COS trend 0.002

(0.003)

COS and market trend -0.0027∗∗∗

(0.0007)

COS market trend intercept 0.126∗∗∗

Continued . . .
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Table 3: (continued)

Param. Description (1) (2) (3) (4) (5)

(0.032)

Nearby adapt -0.064∗∗

(0.032)

Nearby adapt intercept -0.053

(0.058)

SSR 32,136.83 32,128.69 32,128.51 32,120.43 32,119.00

Notes: Travel cost is expressed as the utility cost per mile travelled. Budget reflects dollars
spent per $10,000 in annual income. "Outside" represents utility from aggregate stores. Budget
and outside utility vary by income quartile. BWW, CHI, and TGI represent Buffalo Wild Wings,
Chili’s, and T.G.I. Fridays, respectively. APLC represents an Applebee’s that was company-owned
when it first opened. APLF respresents an Applebee’s that was initially franchised and was opened
prior to the IHOP sale. APLN represents an Applebee’s that was opened after the sale to IHOP.
Trends are linear time trends. Robust standard errors are in parentheses. *** p<0.01, ** p<0.05,
* p<0.1

7.1 Simulations

To estimate the magnitude of the franchise effect, I simulate a scenario in which the franchise
effect (β09) equals zero. This allows me to compare predicted revenue to what store revenues
would have been if there were no positive impact from franchising or if the stores had not
changed ownership. In this section, I discuss results from Specification (2). Results for other
specifications are shown in Table 4.

I find that franchising increases average store revenue by 7.4 percent. In 2013, aver-
age annual alcohol revenues were $479,000 per Applebee’s store, meaning that franchising
brought in an additional $35,000 in alcohol sales per store. Because there is no outside or
composite good in this model and budget formation is independent of restaurant options,
all additional revenue due to franchising comes from individuals switching away from other
restaurants. Specifically, 30.3 percent percent of this additional revenue comes from indi-
viduals switching away from non-Applebee’s chain stores, and 68.4 percent of the revenue
comes from individuals switching away from non-chain stores. An additional 1.3 percent
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comes from individuals switching away from another Applebee’s store.18

To estimate the impact of the IHOP sale, I simulate a counterfactual in which the effect
of IHOP’s ownership on store revenues, γ, is equal to zero. Note that, in this counterfactual,
I do not set β09 to zero; I am isolating the impact that IHOP’s ownership had on all stores
from the benefits from franchising experienced by stores that change ownership. I find that
IHOP’s ownership increased statewide Applebee’s revenues by 7.8 percent. I call this the
“IHOP effect” in Table 4. Adding this IHOP effect to the estimated franchising effect of 7.4
percent, I find that the total revenue increase experienced by Applebee’s stores that changed
ownership is approximately 15 percent.

8 Conclusion

In this paper, I used the sale of Applebee’s to IHOP and subsequent franchising of all
Applebee’s stores in the state of Texas to estimate the effect of franchising on store revenues.
I find that franchising increased store alcohol revenues by approximately seven percent. This
supports the hypotheses of many theoretical and empirical papers which predict that, all else
equal, franchised stores will outperform company-owned stores.

This revenue increase provides a response to two critiques of franchising. One is related
to economic efficiency and the other is related to public policy. The first critique is that the
drawbacks of franchising — most notably double marginalization — will result in inefficient
outcomes, including high prices. Because franchisees’ marginal costs include the variable
portion of the franchise fee, franchisee-owned stores are predicted to have higher prices.
These price differences have been observed in empirical works (Thomadsen, 2005). The fact
that I observe an increase in revenues due to franchising despite this double marginalization
indicates that the benefits of franchising outweigh those concerns and lead to greater total
surplus.

The second critique is illustrated in an ongoing trial between the National Labor Rela-
18For Specification 5, because the nearby chain stores get worse following the ownership change, they lose

revenues to both Applebee’s stores and aggregate stores. As a result, their net revenue loss is greater than the
increase in revenue experienced by the Applebee’s stores that become franchised. Similarly, while aggregate
stores lose some revenue to the Applebee’s stores that change ownership, they gain a substantial amount of
revenue at the expense of the non-chain stores that get worse. Overall, aggregate stores see their revenue
increase following the Applebee’s ownership change. This explains the unusual values for the “Share” rows
for this specification in Table 4. This odd result, where an Applebee’s ownership change results in a net
revenue gain for aggregate stores, is a consequence of the nested logit; any time an alternative gets worse,
it loses consumers to every other store. Because aggregate stores earn much more revenue than Applebee’s
stores, it is unsurprising that a majority of the revenue lost by chain stores goes to aggregate stores. An
alternative model could allow the nesting parameter to change; this would be a better way to model the
theory that the new franchisees are especially effective at targeting chain restaurant customers.
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Table 4: Impact of Franchising - Utility Comparisons and Simulation Results

Empirical Specification (1) (2) (3) (4) (5)

Equivalent distance reduction 3.6 2.8 0.6 2.1 2.0

Equivalent outside store increase 1.1 0.8 0.2 1.3 0.6

Franchise effect 9.4% 7.4% 1.5% 13.0% 6.6%

Share from outside. 68.7% 68.4% 68.6% 70.0% -167.1%

Share from chain 30.0% 30.3% 30.2% 28.9% 269.9%

Share from other Applebee’s 1.3% 1.3% 1.3% 1.2% 2.8%

IHOP effect 29.3% 7.8% 11.0% 4.6% 8.2%

Notes: "Equivalent distance reduction" reflects the reduction in distance to a company-
owned Applebee’s store that would produce a utility gain equal to the utility gain caused
by franchising that store. "Equivalent outside store increase" reflects the increase in the
number of stores in an outside option with the mean number of stores (14) that would
produce a utility gain equal to the utility gain caused by a company-owned Applebee’s
store being franchised. "Franchise effect" indicates the percentage increase in revenue due to
franchising. Shares are equal to the loss in revenue for that store type divided by the gain in
revenue for Applebee’s stores that become franchised; "outside", "chain", and "Applebee’s"
indicate non-Applebee’s chain stores, outside options, and Applebee’s stores, respectively.
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tions Board and McDonald’s Corporation, the parent company and franchisor of McDon-
ald’s restaurants. The case concerns whether McDonald’s Corporation should be considered
a “joint employer” of employees who work at franchisee-owned McDonald’s stores. If Mc-
Donald’s Corporation is considered a joint employer, it could be held liable if franchisees
violate labor laws and be required to negotiate with union representatives (Scheiber, 2018).
Comments from groups supporting the opposing sides in the issue indicate two starkly dif-
ferent views on franchising. Franchise trade groups have argued that treating McDonald’s
Corporation as a joint employer would reduce the autonomy of franchisees and lead to fewer
franchised businesses. A representative of an entrepreneurial advocacy group stated that
franchisors “must now worry about being dragged into labor lawsuits involving someone
else’s employees.” (Wilson, 2018). In contrast, labor activists have argued that corporations
use franchising as a tool to keep wages low and undermine unions. The president of the
Service Employees International Union stated that “We can’t let [franchisors] get away with
offloading employees to their franchisees” (Gruenberg, 2018). While my research does not
investigate the effect of franchising on store employees, I do find that franchising provides
substantial benefits to consumers, and that policies which lead to fewer franchised stores will
have a negative impact on store revenues and consumer utility.

Appendix

A Data Appendix

Geocoding

According to the U.S. Census Bureau (USCB), zip codes are “not areal features but a col-
lection of mail delivery routes.” Because of this, the USCB created Zip Code Tabulation
Areas (ZCTAs), which are “generalized areal representations” of zip codes. I used ZCTAs
when geocoding zip codes. I used multiple resources to geocode ZCTAs. First, I used
MABLE, an online database maintained by the Missouri State Library. This database pro-
vides population-weighted centroids for every ZCTA in the United States. For data prior
to 2009, approximately 25 percent of zip codes (representing approximately 2 percent of
the population) do not have a match in MABLE. For these, I used a privately maintained
database at Boutell.com for matching. This database typically gives an area-weighted cen-
troid. A small number of zip codes (representing about 0.01 percent of the population)
were invalid. These were excluded from my analysis. Distances were calculated using an
ellipsoidal model of the earth.
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Sample selection

I excluded all observations that were the first or last quarter that a chain store was in the
data set, because they likely represent sales for only a part of the quarter. If any store
has less than $100 in sales during a quarter, that store’s quarter is omitted from the data.
The only restaurants specifically excluded were those in Dallas / Ft. Worth International
Airport. These stores often reported their taxes as a single, combined entity, meaning that
store-level sales could not be identified. One of these excluded stores was a T.G.I. Friday’s.

I model quarterly alcohol sales. Population and income data are available on a yearly
basis. I smooth annual changes uniformly over the course of the year.
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